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Abstract

With life expectancy ever increasing in this modern age, financial
planning has never been a more important issue for individuals. What
should one’s consumption pattern be and what level of investment
should one make in order to maximise utility over one’s lifetime? This
paper presents an economic model which quantitatively solves these
issues in a complex environment where returns are mean-reverting and
correlated with the risky asset. To further reflect the real world we
incorporate event risk, represented by sudden changes in the value of
the risky asset. We analyse the interaction between the consumption
level and the level of investment for individuals over time. In addi-
tion, we observe how individuals’ insurance behaviour changes over
the course of their lifetimes.

Keywords: Financial planning; utility theory; consumption; event
risk; stochastic optimal control.

Journal of Economic Literature Classification Numbers: C61, D14,
D91, G11, G22, H55, J26.
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1 Introduction

Merton is regarded as a pioneer in applying stochastic optimal control to
problems in finance. His seminal paper in 1969 and subsequent extension
(Merton, 1971), on applying dynamic stochastic techniques to the optimal
lifetime consumption and investment problem has captured the attention
of many researchers. For example, Richard (1975) was one of the earlier
academics to adapt the Merton model to include mortality and insurance.
Over the years, researchers have gradually extended the traditional model to
incorporate more richer stochastic environment. Some, but not limited to,
include Heston (1992) on stochastic volatility, Kim and Omberg (1996) on
mean-reverting risk premium and Henderson (2004) on stochastic income.

This paper will focus on one of these areas, namely mean-reverting re-
turns. We aim to study the impact of jumps on optimal consumption and
investment strategy for a finitely-lived investor when the risk premium is
mean-reverting and predictable.

The reason for choosing this area is that there is empirical evidence sug-
gesting investment returns are mean reverting. Poterba and Summers (1988)
show that serial negative correlation seems to exists in the longer horizon over
the US and 17 other countries, suggesting mean reversion. The inclusion of
jumps in the risky asset is motivated by recent papers on event risk! as well
as it being a more realistic model. Finally, consumption is included since
it is an important aspect of investor’s behaviour. Part of the reason for
investment is to fund consumption.

Before we enter into the details of our problem, it is necessary to first
define what it is meant by an optimal consumption and investment strategy.
We will start off by defining an optimal investment strategy, as it is simpler
to understand. By optimal investment strategy, we refer to an agent choosing
an investment strategy such that it maximises some objective function, such
as maximising the expected terminal wealth over a period of time. In a simple
two-asset model, the investment strategy involves choosing the proportion of
wealth allocated to both the risky asset and the risk-free asset. Thus, the
agent has to choose between the risk-free asset which has a low return, and
the risky asset which has a higher return but simultaneously entails more
risk.

By the same token, optimal consumption is defined as maximising the ex-
pected utility derived from consuming his/her wealth over the period.? This

Liu, Longstaff and Pan (2003) investigated the optimal control problem for stochastic
volatility in a double jump model developed by Duffie, Pan and Singleton (2002).

2The optimal investment strategy problem is actually a subset of this problem as one
could assume that the agent consumes all his/her wealth at the end of the period.
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problem is now slightly more complex as the agent is now required to make
two decisions. Not only does he/she need to formulate an investment strat-
egy, he/she also has to determine how to consume his/her wealth over time to
obtain the highest expected utility. These two decisions are often interlinked
since consumption is based on the current wealth which is determined by the
investment strategy taken.

In this work, we wish to observe how jumps and mean-reversion with
predictability affect these dynamics.

The paper is organised as follows. Section 2 reviews some optimal control
papers relating to mean-reversion. Section 3 extends the Wu (2003) and
Wachter (2002) models. Section 4 explains the numerical technique that was
used to solve the stochastic optimal control we are dealing with. Section 5
reports the results of our modelling and analyses the findings while section
6 concludes.

2 Literature Review

This section will examine three key aspects of mean-reversion by critically
review three papers. Other references are made throughout to complement
these studies. We will begin with an analysis of the plain-vanilla mean-
reverting model by Kim and Omberg. The objective of this is to demonstrate
that predictability has an important impact on the optimal allocation. More
specifically, the concept of ‘intertemporal demand’ (a form of non-myopic
demand) is introduced to show that investors no longer consider the problem
as a single period problem. Subsequently, we will discuss the impacts of
jumps on the Kim and Omberg model (Wu, 2003). This is of significance as
empirical studies have shown that diffusion processes do not provide good
fit to ‘financial’ data (Gallant and Tauchen, 1997). Finally, the optimal
consumption problem in this environment, developed by Wachter (2002),
is reviewed. We will establish that consumption, which has recently been
overlooked by investigators in this area, does have an explicit influence on
the optimal allocation strategy.

2.1 Kim and Omberg

Kim and Omberg investigated the optimal allocation problem in an environ-
ment where the risk premium is mean-reverting as well as being correlated
with the risky asset.> Mathematically, the risky asset follows the geometric

3Merton (1971) had investigated a very similar problem. In his model, it is the return
of the asset that is mean reverting. Also, the two processes (risky asset and risk premium)
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Brownian process

ds
= (an)dt + odZy, (1)

where o is the instantaneous expected return, o2 is the stock’s volatility, Z;
is a standard, one dimensional Brownian motion. The risk premium,.X;, also
known as the Sharpe ratio, is defined as

oy — T

X =~ (2)

where r represents the risk-free rate and obeys a mean-reverting Ornstein-
Uhlenbeck process

X, = —Ao( Xy — X)dt + 0,d%s. (3)

Here we use )\, to represent the reversion rate, X is the unconditional mean
of X;, o, is the processes’ volatility and Z5 is another Brownian motion.
Finally, correlation existbetween the two Brownian motions in S; and Xj,
denoted by p.

Intertemporal Demand

Using Kim and Omberg’s methodology, it can be shown that under power
utility, the optimal asset allocation for an investor with risk adversion 7 is

(4)

(1) = (X L P7C(DXi+ pame)

oy oy
with the ODEs being;:
ac

= = (1) +H0() +a ()
B = B0 + LB+ AXO() (6)
dA & 2 1 2 ¥

= = B0+ 50%0(r) + AXB(r) (7)

a, b and c are detailed in Kim and Omberg (1996). The first term in Equa-
tion (4) is the well-known formulation for the myopic demand of the risky
asset (see Merton (1971) for more details). The last term of 6* is termed

are perfectly positively correlated and exponential utility function was used instead of
HARA.
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intertemporal demand. It is classified as ‘hedging against risk premium un-
certainty’ when the investor departs from myopic demand in order to increase
wealth when risk premium becomes less favourable. Similarly, ‘speculating
against risk premium uncertainty’ is defined as a departure from the my-
opic demand in order to increase wealth when risk premium becomes more
favourable. Investors who have a risk-aversion,y >1 always hedge, while for
investors with v <1, they always speculate.

From Equation (4), one can see that this intertemporal demand exists
when the correlation between the two Wiener random variables is not zero.
When it is zero, the optimal allocation is simply the myopic demand as
noted by Merton (1971). This is because with no correlation at all, the
investor cannot predict the direction of the shocks to the risk premium with
respect to the shocks to the risky asset process itself, thus cannot exploit any
opportunities. Given that the investor can rebalance his/her portfolio every
period, the investor would just look at the current opportunity set and invest
according to the myopic demand. When new information arrives in the next
period (that is, changes to the instantaneous return of the risky asset), the
investor will readjust his/her investment portfolio accordingly.

This is not the case when there is a correlation between the Wiener pro-
cesses. As there is a relationship between the two processes, investors can
predict the direction of the Wiener processes with respect to each other. The
predictability allows investors to exploit this relationship to their advantage.
For a investor with v greater than 1, he/she would hedge against the risk,
while investors with v less than 1 will speculate. To illustrate, when the risk
premium is positive and the correlation is negative, a investor that hedges
(with a  greater than 1) will hold more of the risky asset. This is because
the risky asset will have a higher return when investment opportunities are
poor. Therefore, the investor will increase his/her allocation to the risky
asset so if there is a drop in investment opportunities, he/she would have a
higher wealth than in the myopic case.

The direction of the intertemporal demand (that is, whether the investor
would hold more or less of the risky asset) depends on three factors: 1 —-~, p
and X — X, where X, is the risk premium at which non-myopic and myopic
investors behave indifferently. The results are tabulated in Table 2.1 (Kim
and Omberg, 1996).

When X; is sufficiently negative, the investor that hedges would short
the asset. This is expected since the investor is better off by shorting stocks
and invest the proceeds into the risk free asset. What is surprising is that
with predictability, the investor would actually short at a magnitude greater
than the myopic demand (a negative hedging amount). The rationale for this
is that it is the magnitude of the risk premium, not the sign, which deter-
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Table 1 M/L — whether the investor will hold more (M) or less (L) than
the myopic demand level. Similarly, H/S — hedges or speculates.

Summary of Results for M/L and H/S from Kim and Omberg
l1-v p X-X. M/L H/S

o+ + M S
+ - 4+ L S
+ o+ - L S
+ - - M S
-+ L H
- -4+ M H
-+ - M H
- - L H

mines the current attractiveness of the asset. When the risk premium is low,
movements toward 0 actually represent a deteoriation in the investment op-
portunities as shorting becomes more expensive. Therefore, to hedge against
it, the investor shorts more than the myopic demand so his/her wealth will
be higher if X; does move towards 0.

This is in line with the results derived by Barberis (2000). Barberis uses
dividend yield to predict the returns of the stock where there is a negative
correlation between the stock returns and the dividend yield. He shows that
this predictability increases the asset allocation for an investor with v > 1.

Time Dependent Intertemporal Demand

Further analysis of equation (4) reveals that the intertemporal hedging/ spec-
ulative demand is time dependent. With power utility, Wu (p.240) shows that
C(7),C' (1), B(1) and B'(7) are negative when v > 1. This indicates that as
7 increases (that is, when the investment horizon increases), C'(7) and B(r)
will get more negative but increase in magnitude, consequently increasing
the intertemporal demand. Thus, the investor would invest more than the
myopic demand when he/she is young and gradually reduce his/her position
over time. Just before the investment horizon ends, his/her allocation would
simply be the myopic demand. This is what is known as age-phasing.

This result is interesting in that previously, authors such as Samuelson
(1969), Merton and Richard have discovered age-phasing does not occur in
complete market settings and have criticised financial planners for promoting
the age-phasing investment strategies. Age-phasing seems only to exist when
market is incomplete, as noted by Bodie, Merton and Samuelson (1992) in
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their paper on non-tradeable income. However, under this mean-reverting
model, even when the market is complete, age-phasing still occurs. In fact,
the investor actually holds the highest proportion in the risky asset when the
market is complete (that is, when p is -1). Therefore, Kim and Omberg’s pa-
per seems to support the age-phasing investment strategy in today’s market.
This is because intertemporal demand decreases as 7 decreases and assuming
that the risk premium is constant, the overall allocation to the risky asset
would decrease.

2.2 Jumps

Wu (2003) extends Kim and Omberg by adding jumps to the risky asset. As
a result the return of the risky asset P changes to

dP
where () is a Poisson process with parameter A, g follows a normal distribu-
tion with mean p, and volatility 02 and g = E(e? —1). Equation (8) implies
that the risk premium is
ap—Ag—71

(9)

Ty =
o

Interrelationship between jumps, myopic and intertemporal hedg-
ing
Wu has derived an approximate solution for the terminal wealth case which
has the form:

Xy | 0up(B(1) +7C(7)) | Ag
=—+ + —

oy oy oy
where § = Ey[1 + 60*(X;,t)(e? — 1)]77(e? — 1), capturing the marginal utility
of wealth change conditional on one jump occurring. The last term is what
Wu termed as ‘jump demand’. On first inspection, one may believe that the
optimal weight is driven by three independent sources, myopic, intertemporal
and jump. However, further analysis would reveal that the jump demand is
intrinsically intertwined with the other two. A minor relationship is that
jumps affect the risk premium, assuming a; to be fixed. Therefore, the
myopic and intertemporal demand would inherently be adjusted to reflect
the new risk premium. A more significant impact is that since ¢ is in the
jump demand it is also a function of 8*, its effect depends on the overall
position of the portfolio. As such, the myopic and intertemporal demand
influences the jump demand by their contribution to 6.

6

(10)
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2.3 Intertemporal Consumption

Recently, many researchers have mainly concentrated on deriving the opti-
mal investment results with an objective function which aims to maximise
terminal wealth terminal wealth case (Wu, Liu et al. and Henderson). From
an investment perspective (for example, a fund manager), this is perfectly
fine since the sole objective is to maximise wealth.

Consumption is, however, an important economic aspect in life; one of
the main drivers of investing is to fund consumption over lifetime. We are
interested in consumption since in the standard optimal investment and con-
sumption problem we described in Chapter 1, the problem is formulated
using utility from lifetime consumption as the building block of its objec-
tive function. Optimal consumption problems are naturally more complex
to solve and will demonstrated, consumption does have a material impact on
the optimal allocation and thus should not be neglected

We focus on Wachter’s findings in this section.

Weighted Average Formula

Wachter extends the Kim and Omberg model by the inclusion of consumption
to the model. Using a martingale approach, Wachter derived the solution to
the model to be:

- 1 (Mt o fOT_t H(X:, p)(Ai(p)X: + AQ(T))anl)

v\ o2 yo [{ TV H(X,, T)dr
where H(X;,7) = exp {i(Al(T)Xfﬂ + Ao (1) X + Ag(T))} (12)
Ar) — 1—7y 2(1 —e27) 13)

v 2A = (ba+ A)(1—e57)

1y 4N X (1 —e B7)2
A(r) = v 0(2A — (b + A)(1 —e27))’ (14)

and Az(7) is an ODE that comprises of the integral of A; and As, A is the
discriminant, by — 4b,b3, as described in Wachter (p.70).

In this model, a more meaningful explanation can be given to the last
term in (11), the intertemporal hedging demand. It can be considered as
a weighted-average, where H(X;, ) are being used as the weights. In fact,
0 itself is a weighted average. This can be verified by rewritting the above
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expression (11) as:

T H (X, 1) 1 p—r\ oz _ T _
' /0 Jo Tt H (X, )dr! . [’Y ( o? ) ’ya(Al( JXi+ Ap(7))| d
(15)

Since the myopic demand does not depend on 7, the integral for the
myopic demand in (15) disappears as a result.

To provide an intuitive interpretation as to why the optimal allocation
is actually a weighted-average, it is necessary to understand what H(7) rep-
resents and why it is used as the weight. In terms of H(7), wealth can be
rewritten as

T—t
W, :ct/ H(X,, 7)dr
0

Thus, H(X;,7) is the value of consumption in 7 periods, scaled by today’s
consumption.

With H(7) defined, it is now possible to explain the intuition behind
the weighted-average characteristics of the optimal allocation (11). Given,
as mentioned previously, that the investor treats each consumption event
separately, in order to obtain the optimal allocation, the investor first treats
each ‘coupon’ as a terminal wealth problem. Subsequently, the investor would
perform a weighted average of each individual allocation and the most logical
value to use as weight is H (7). This is because it represents how much portion
of wealth the ‘coupon’ consumes.

Finally, the allocation under terminal wealth is simply a subset of this
model. In the terminal wealth case, there is no consumption during the
investment horizon. Hence, H(X;,7) = 0 for 7 > 0. The integral in the
hedging demand term falls out and the terminal wealth result is obtained.

Impact of Consumption on Investment horizon

A new and interesting result is the impact of intertemporal consumption
on the optimal asset allocation. Previously, Merton and Richard, under
complete markets, have shown that analytically, the optimal asset allocation
does not depend on consumption. Recently, Purcal and Wang demonstrate
numerically that this is also the case in various incomplete settings. However,
in Wachter’s paper, she shows that for a consuming investor with a thirty-
year investment horizon, the investor’s allocation of wealth to the risky asset
is actually less than its terminal-wealth counterpart. More accurately, it
is slightly less than that of a terminal-wealth investor with an investment
horizon of ten years. This indicates that with consumption, an investor
views his/her horizon as just 10 years even though the actual time horizon
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is 30. The deviation of the optimal allocation from the terminal wealth case

is due to the correlation between the risky asset and risk premium.

Jo " H(Xp) (A1 (1) Xi+ Ax(r) ) dr
fOT_t H(X¢,7)dr

actually a measure of the sensitivity of consumption stream with respect to

X;. It measures the percentage change of the wealth when there is a small

change in the price of risk. This is similar to the duration of a bond which

measures the sensivity of the price with respect to interest rate change. Thus,

the hedging demand represents the ‘duration’ of the investor’s consumption

coupons with respect to X;.

With this intuition, the phenomenon described above can be easily ex-
plained. Since there are consumption ‘coupons’ during the horizon, the ‘du-
ration” would obviously be less than that of having just one coupon at the
terminal date. In addition, the hedging demand increases as investor’s hori-
zon increases because by adding consumption at the end, it pulls the overall
duration up.

From an economic perspective, the term —

2.4 Summary

We summarise the salient points of the literature explored above as follows:

e Correlation between the risky asset and the price of risk induces in-
tertemporal hedging/speculative demand. A negative(positive) correla-
tion will impact positively(negatively) for an individual with a relative
risk aversion ,y of greater(less) than 1

e The jump impact depends on the overall position on the risky asset
e Consumption will reduce the magnitude of the intertemporal demand

Wachter’s model is based on a restrictive assumption, that is, the market
must be complete. The impact of consumption on the optimal allocation
is unresolved when the market is incomplete, especially in a market that is
susceptible to jumps. This forms the basis of our model presented in the
next section.

3 Model

This section sets up the mean-reverting model that we will be investigating.
We will first describe the market and the objective of the investor. This
is followed by the establishment of the optimal control problem we wish to
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solve. Finally, the first-order conditions for the controls are subsequently
derived.

Our model builds on the work of Wu and Wachter, discussed in Section
2.2 and 2.3. We integrate the main features of both models into a mean-
reverting risk premium environment — jumps from Wu and consumption
from Wachter. In addition, the model also includes the bequest and insurance
elements proposed by Richard (1975). The inclusion of insurance is because
individuals not only invest and consume, but also purchase life insurance
over their life cycle to their loved ones.

3.1 Structure

In our model, the market consists of two assets — a risk-free asset which
has a rate of return r and a risky asset, S;. The risky asset return is mean-
reverting as well as being exposed to event risk (market crash or boom) which
causes abrupt changes to the price of the asset. As a result, event risks are
modelled by a Poisson jump process. The rate of return of S; follows the
jump-diffusion process

ds

o = (o — Ag)dt + odZy + (e — 1)dQ, (16)

where oy is the instantaneous expected return, o? is the stock’s volatility,
@ is a Poisson process with jump intensity parameter A, ¢ follows a normal
distribution with mean 7, and volatility 02, /1 is a standard, one dimensional
Brownian motion and g is the expectation of the jump magnitude given a
jump occurred. That is, g = E[e? — 1]. There is only one state variable in
the model, the risk premium, X;, which describes the states of the world. X,
obeys a mean-reverting Ornstein-Uhlenbeck process

Here we use )\, to represent the reversion rate, X is the unconditional mean
of Xy, 0, is the processes’ volatility and Zs is another Brownian motion. The
risk premium is linked to the risky asset’s instantaneous expected return by

ar—ANg—1

X, = (18)

o
Finally, the correlation between the two Brownian motions in .S; and X, is
given by

E[dZ,dZs) = pdt. (19)
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An investor in this environment is modelled to consume, at a rate of
¢; per annum over his/her lifetime and have a bequest motive. In order
to fulfil the bequest motive, insurance at a rate P, is purchased. He/she
also forms an investment portfolio consisting of the two assets to generate
a return to sustain consumption. The investment portfolio is rebalanced
continuously with no transaction costs. Consequently, the investor is subject
to the following wealth constraint:

dsS
dW = rWdt + (S — r) OW dt — c,dt — Pdt, (20)
where 6 is the proportion of wealth allocated to the risky asset.

The formulation of the insurance premium is simply taken from Richard
(1975). The level of insurance that is purchased is related to the bequest
amount, denoted by Z;, which is the amount to be paid to dependents in
the event that the investor dies. It is calculated based on the equivalence
principle (Bower et al. 2000). Thus, P, can be expressed as:

P = (2 — W), (21)

1 being the force of mortality. It is only the excess of Z; over W that requires
the protection of insurance. There are no constraints on P, meaning that it
could be negative — this may sound strange, as it implies insurance com-
panies pay investors when bequest amounts are less than wealth. However,
in actual fact, because the investor already has sufficient funds to satisfy
his/her current consumption as well as the bequest amount (that is, he/she
is saturated), he/she is selling the excess wealth to the insurance company.
In the event that the investor dies instantaneously, the insurance company
will get the excess wealth. Thus, the insurance company is now ‘buying’ this
life insurance contract rather than selling, and the situation of P, < 0 can be
realistically viewed an an annuitisation of the investor’s excess wealth.
Using (17),(18) and (21), (20) becomes:

dW = rWdt + W (o X dt + 0dZy + (€7 — 1)dQ) — cidt — (W — Zy)dt (22)

The investor’s objective is to maximise his/her expected utility over at time
t subject to the budget constraint (22).
The investor solves

o | /0 "V (C(s), 8)ds + B(Zn, T) (23)

where Ej is the conditional expectation operator over all paths of the state
variables given.* V/(C(s),s) is the utility of the investor consuming C(s)

41t is condition on information availabe at time 0.
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at time s, and B(Zp,T) is the utility associated with bequest Zr with T’
being the future lifetime of the investor. Equation (23) formally states our
stochastic control problem.

The controls for this problem are 6;, ¢; and Z;. They are called controls
as they are determined by the investor. Wealth and risk premium are the
state variables of this problem. The investor has no direct control over the
state variables. For wealth, the investor can indirectly control over it through
his/her choice of the controls.

3.2 Utility of consumption and bequest

Similar to many papers in optimal control (Purcal 2003, Wu, and Wachter),
the power function will be used as the investor’s utility function, defined as

Wi
=1

uw) (24)
where v is the relative risk aversion of the investor.

The power utility function has the advantage that it is homothetic. Ho-
motheticity implies that the investor has a constant relative risk aversion
(CRRA) so he/she would behave indifferently with different levels of wealth.
This simplifies the numerical analysis in later sections as the optimal weight
obtained from a particular wealth level is applicable to all levels of wealth.

With relation to the forms of V(C(s), s) and B(Zr,T), they are directly
taken from Richard (1975). They are

Zr

1—7

Richard did not specify h(s) and m(t) directly, however, it is common practice
(Purcal and Wachter) to set h(s) to e . e P! can be considered as the

discount factor with a time preference of 3. For m(t), we adopt Purcal’s
choice of

B(Z7,T) =m(T)U(Zr) = m(T)

m(t) = e @ [ esp(-rto - t)dt)y, (25)
which then implies Z(t) = ;Ct* /tw exp(—r(w — t))dt. (26)

Z(t) gives the present value of a certain annuity from ¢ to terminal age w
where the coupon payments are two-thirds of his/her current consumption.
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To facilitate presentation, we set
2 w
o) = 3 / exp(—r(w — t))dt.
t

3.3 Hamiliton-Jacobi-Bellman (HJB) Equation

Having established the environment and market, the standard stochastic con-
trol approach is now applied to the control problem (see Merton 1971 for a
detailed explanation). Following the standard procedures, we define the in-
direct utility function as

w T
J(VV, Xt; t) = max Et [/t TPtt+T l/t V(CS, 5)d$ + B(ZT, T)] dT‘|

0s,t<s<T

(27)
The terms rp; and p 7 are the standard probability of survival and force
of mortality respectively (Bowers). Rather than obtaining the normal HJB
equation, the current HJB equation is derived instead (Purcal). The ad-
vantage of the current HJB is that the values are larger so when applying
numerical techniques, the values obtained are more accurate. Consequently,
we redefine the indirect utility function to

J(W, Xt,t) — max FE, [eﬁt /tw Spte_ﬁs (,USQS(S)’YZ(T)l_W n C(S)1—7d8>‘|

0s,t<s<T 11— 1—7
(28)
with boundary condition
JW, Xy, w) = ¢(w)B(w)
Using Ito’s jump-diffusion lemma, the current HJB equation is
Z= o
O:maX{EJ—FJt—(ut+ﬁ)J—|—ut¢71_7—|—1_7} (29)

where £ is known as the Dynkin operator; it is applied here to J over the
variables W and X, yielding

L] = )\Et[J(W/, Xt, t) — J(VV, Xt, t)] + JW(TW + QUXtW — Ct — Zt,ut + ,UtW)
1 - 1
+§JWW(00W)2 — Jx (X, — X) + §JXXU§ + pOW oo, Jwx (30)
where W’ = W1l + 0(e? — 1)] is the wealth of the investor conditional of a

jump occuring and the notation J, represents the partial derivative of J with
respect to y.
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Rewriting Equation (30), we have

1
L] = AEJJW' X0, 1) = J(W. X, 0]+ Jwd* — Jwd™ + 3 Jww (6 W)*

1
+ o fT = L f + §JXX(72 + pWoo, Jwx (31)
with
dt = W+ 0o X;W + W (32)
A~ = o+ Zu (33)
= X (34)
= = A (35)

The reason for such notation will become clear in the next section.
Furthermore, the first-order conditions for the controls are:

—Jw \ Ty (—JWX ) op  AE[Jw (W' xy, t)(e? — 1 l
0 X t — —_— ‘ /3\}
(W t’) (JWWw>O' waw o + —JWV[/WO'2 N
o = U'(Jw) (37)

o
Z, = Uz\ ¢<gw) (38)

The notation F'~! represents the inverse of the function F.

These first-order conditions specify the optimal values for the controls.
Hence, to calculate the optimal 6;, the investor would apply J to Equation
(36).

The first term on the right hand side of (36) is the standard formulation
for myopic demand for the risky asset. The subsequent term represents
the investor’s intertemporal demand arising from the correlation of the risk
premium and the risky asset. The final term is the jump demand, as classified
by Wu, which is discussed in Section (2.2).

Based on Wachter’s study, it seems that a closed form solution does not
exist when the market is incomplete.® As such, we proceed with a numerical
approach.

4 Numerical implementation

This section details how the model developed in section 3 is implemented nu-
merically. We begin by explaining the numerical and discretisation schemes

5See Wachter (2004) for discussion.
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that are used. These schemes are then applied to our model to arrive at a set
of linear equations which required to be solved. The process of solving this
set of linear equations is, thus, the subject of the next section. This section
concludes by specifying the parameters to be used for the model.

4.1 The numerical scheme

The finite-difference method is utilised in this paper. It essentially discretises
the continuous control problem into a discrete version and uses the discrete
values to approximate the derivatives. This method has been widely used in
the literature. For example, Brennan et al. uses the finite-difference method
to calculate the strategic asset allocation to stocks, long-term bonds and
risk-free asset.

In terms of the type of scheme adopted, we chose the implicit scheme
over the explicit scheme. The implicit scheme uses values from the previ-
ous grid of state variables as well as values from the current grid. Since the
values in the current grid are what we wish to calculate, a system of linear
equations is derived and has to be solved simultaneously. This obviously is
much more computational intensive than the explicit scheme. However, the
explicit scheme is restricted by the CFL condition (Courant, Friedrichs and
Lewy) (Morton and Mayers, 1994) which limits the magnitude of the time
step with respect to the step size of other states. Failure to comply with this
condition makes the scheme unstable.® The implicit scheme, however, is gen-
erally unconditionally stable” (Morton and Mayers, 1994). Consequently, the
implicit scheme does not need a step-size as small as its explicit counterpart.

There are three state spaces in this model, namely wealth, risk premium
and time. In our modelling, wealth ranges from 0 to 20 and is discretised
into P + 1 grid points. Therefore, the step size is 20/P. For risk premium,
it ranges from 0 to twice the value of X with a grid of Q + 1 points. Finally,
time has a step-size of 0.1. For our scheme, we denote the discrete version of
J(W,xy,t) as Jj ; where t represents time, 0 < h < P and 0 <i < Q.

Based on Kushner and Dupuis (1992), the following implicit scheme is
used:

o.J SR — T
ot At (39)

6Stability refers to the global error of the numerical scheme. A scheme is said to be
stable if the global error has an upper bound.

"The implicit scheme would still have to satisfy the CFL condition but the structure
of the scheme ensures that the condition is satisfied in most scenarios
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o) T,
— = ot 2 f + 4
BTG AT or d (40)
oJ JEo—= T,

— = 7O for d° 41
oW Aw (41)
] oo =205+ Jh 1, (42)
owz 2AW

o0J Jﬁ,i+1 - Jﬁ,i 4

oJ JEo—=Jh

e A 44

ox AW or (44)
9%J J;t”'_H _2J}€i+=]i€i—1

a5 = ’ . : 4
0x? 2AX (45)

For the mixed partial derivative, a first-order accurate implicit scheme is

used: 2 t t t t
0*J it = Jhivr — i Ih

= 4
oW oX AWAX (46)
Substituting these into the HJB equation, the discretised version becomes
XA
0 = msx {u<t>¢<t>w<zt> Ue) = () — 97+ P
/ J}i—i-l,i - ‘]ii,z
Jhi = Jhov, Vs = 2Jh, + 2
Jhiz1 = Jhi Jhiv1 = Jhi\ <
TAw N T A A
1Jpion =20+ Jpoa s Jnirivs = i — Jhoni +
- )t X s 0 K] K K thI
i 2AW Oa+ POV, AWAX '

Moving the J* terms to the left of the equation, the like terms are collected
together and the coefficients are detailed in Table 2:

We assume that E,[J(W', X, t) — J(W, Xy, t)] is predetermined, hence
considered as a constant. Section (4.3) will detail how this is actually deter-
mined.

3
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Table 2 Coefficient for the J terms in the HJB.

Terms Coeflicients

Constants At(pep(t)U(Z(t)) + Uler) + AEI (W', Xy, t) — J(W, X4, 1)])
Jh 1+ pAt + BAt+ (00X W + rW + pW)RL + (¢ + e Z) St + (0oW)? 5k
(Xt 4+ ) 2L + 0225 — GWUxUpAXAAW

i1 ((GJW) + (O XW +rW + /LW) + GWO'IO'p AXAW)

i — (O 4 (o + pZ)AW) AL

Jitz,i—l (A””Xt + (QAXQ))AT

o2 z OWoropA

J/tm‘+1 (_(25)(2) A M)AT + %

Tpi1,0+1 —0Wo,0p 53 A

Similarly, the discretise version of all the controls are:

(Jt+At Jhi) Xe (Jh141 — J;tm‘+1 - J/t1+1,z‘ + ‘];;z) Ozp
(thLJrl,i - 21]12,1' + ‘];tzfl,i) Wo AX<J;L+1,’L' - 2J1tm‘ + ‘]ﬁfl,i) o

2AWNE [Ty (W' x4, t) (e — 1)]

Q(I/I/, Xt,t) - —2

48
(Jh1s —2Jb + Jh )Wo? (48)
¢ = (h?wﬁl) = (49)

Z; does not need a discrete version since we can obtain it from ¢; and ¢(t)
where the latter term does not depend on the value function.

4.2 Boundary Conditions

Equation (47) represents an equation for J} ;. There are (P+1) x (Q+1) grid
points in our grid so there would be (P + 1) x (@ + 1) equations. However,
there are in fact more than (P + 1) x (@ + 1) unknowns. This is because
equations for the boundaries of the grid are actually referring to J which is
outside our specified. For instance, the equation where h = P and i = )
refers to Jp,; o, However, the point (P + 1,Q + 1) does not exists in
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our finite grid. Consequently, assumptions are needed for values beyond the
boundaries. The following boundary conditions are made:

Jpi1; = Jp; (50)
Ji7_1 = Ji,O (51)
Jig+1 = Jig (52)

These conditions are similar to the reflecting boundary conditions suggested
by Kushner and Dupuis (1992). Furthermore, there is one more boundary
that needs to be addressed — when wealth is zero. In that state, the investor
is bankrupt and the power utility states that the utility is negative infinity.
Obviously, it is impossible to input negative infinity to represent this and so
the utility is set at —10?° for all + when wealth is zero.

With these boundaries conditions, there are now only Px (Q+1) unknown
but there are (P + 1) x (@ 4 1) equations so a solution can be found.

4.3 Method of solving implicit scheme

If the coefficients listed in Table 2 are all known, then J' can be found be
performing a matrix inversion on the set of equations. Unfortunately, the
controls 6, , ¢, and Z, are functions of J! itself as well. Furthermore, the
function 6, also is a function of itself. To deal with these non-linear functional
relationships, the standard policy iterative approach is used (Fitzpatrick and
Fleming 1990). The process is:

1. An initial guess is made of 6;, ¢, and Z; by using J*+2t.# For example,
to obtain 6;, the JA! values are substituted into (48). Also (48) requires
Jt, however, at this stage, we assume that J+2¢ = Jt.

2. Using this 0, the jump demand (the third term on the right in (48))
is calculated and subsequently, the 6 is recalculated. Due to the complexity
in deriving J values with the term W', it warrants its own subsection.

3. Step 2 is repeated twice. This is to minimise the difference between
the 0; on the left and the 6, in the jump demand term. (Actual testing shows
that repeating the process three times yields good convergence.)

4. By using 0;, ¢; and Z; obtained from previous steps, the coefficients
described in (2) is calculated and set up as a matrix such that the product of
the matrix and a vector of .J;, ; yields the set of equations in (47). With these
values, the value function J can be computed by a simple matrix inversion.

5. Using this new J*, Steps 1-4 are repeated 2 more times but for each
iteration, the new J' is used as the value function.

8In the case of terminal age, the myopic demand is used.
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6. The J! is subsequently considered as the approximation to the true
value of J*

4.4 Determining the Jump Demand

The terms E[J(W’, X};)] and E[Jy (W', X;)(e? — 1)] are complicated to de-
termine as it is in reference to W' rather than W. The J value functions
that is currently available cannot be directly applied since they are only in
terms of W and X;. Hence, we need J values for W’. An added complexity
that jumps follows a particular distribution, namely log-normal. The key to
calculate these values is to first transform the current wealth, W, to the new
wealth W'.

We will first assume that ¢ is constant and @ is available.” When this is
the case, W’ can be determined by the expression W (1 4 6(e? — 1). With
W' J(W’, X;,t), which we denote by J', is derived by referencing the corre-
sponding values in J(W, X, t). This is because J is only a function of wealth,
risk premium and time. Jumps have no direct impact on J. As an example,
let investor’s wealth decreases from 10 to 5 after a jump occurs. The J’
value for this investor after the jump is now J(5, Xy, t). When W is between
two points on the grid, linear interpolation is used. Boundary conditions are
applied for wealth outside the grid.

Another transformation that is necessary is W’ — AW. This transfor-
mation is required to perform the partial derivative Jy (W' X;,t). The J’
values one grid point below W', that is Jﬁq,ia cannot be used as the step
size between W; ; and W;_, ; may not be AW. Moreover, the steps sizes in
W' are not the same. This is because although the relative impact to each
wealth level is the same, however the absolute impact is different. To illus-
trate, suppose 4 and 5 are 2 adjacent wealth on the current J(W, X;) grid
and assume 6 is 0.5 and e? — 1 = 0.9. After a jump, wealth level 4 becomes
2.2 while wealth 5 becomes 2.75 so the wealth difference in W' is now 0.5
instead of 1. This difference is different when you choose 2 other adjacent
wealth. Hence, J(W’' — AW, X;) needs to be determined separately. With
JW' Xy) and J(W' — AW, Xy), Ji,, (W', X;) can be calculated.

This is only the case when ¢ is constant. What happens when ¢ follows
a distribution as described in our model. Fortunately, the distribution case
is simply an extension to the constant ¢ case. Initially, the jump size ¢ is
discretised into M intervals where the range is three standard deviations on
either side of the mean. We denote each individual jump size as ¢;. The

9As explained in Section (4.3), 6 is a guess of the correct 6.
109 is the same for both cases since CRRA utility is used
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Aq
2
and %.11 For ¢; at the boundaries, it also includes all densities passing the

boundaries. Subsequently, for each ¢;, J(W’', X;) and Jy (W', X;)(e?—1) are
determined. Finally, we simply find E[J(W’, X;)] and E[Jy (W', X;)(e?—1)]
by performing an expectation over the ¢;s.

probability associated for ¢; is derived by summing the density over ¢; —

4.5 FErrors

There are two sources of error present in this implicit scheme. The first is
discretisation error. Since we are using discrete values to approximate the
derivatives, there will always be inherent errors in our results. However, as an
implicit rather than explicit scheme is used, this error is bounded. To reduce
the error, the step size needs to be reduced. Given that the implicit scheme is
only first-order accurate in time, wealth and risk premium, in order to reduce
the error by half, the step size needs to be halved for all states (time, wealth
and risk premium). This would dramatically increase the computational time
required since we have three state variables.

The second source of errors comes from the boundary conditions. As it
is impossible to calculate the boundary conditions for ¢ # T, appropriate
guesses were made to the boundaries. Hence, errors are introduced into the
system. These boundary conditions are fairly inaccurate — we can see, for
the case of power utility, 6, should be the same for all levels of wealth but due
to the boundary conditions imposed, #; = 0 when wealth is at its maximum
(20). However, with the small step size that is chosen, the impact of this
error is limited.

4.6 Setting

The Japanese economy has been chosen in order to study the effects of jumps
and mean-reversion. Japan has been chosen as values obtained from using
these parameters can be easily compared with results from previous studies
(for instance, Purcal and Wang). As mean reversion and jump parameters
are unavailable, they were obtained from other studies. For mean rever-
sion, parameters were taken from Wachter (2003) since the risk premium for
Japan, 0.1, is close to the risk premium in Wachter’s paper. With relation to
the jump parameters, it is assumed that the mean jump size is -0.05 which
represents approximately a 5% drop in market value with a standard devia-
tion of 0.04. The negative skewness is due to the fact that abrupt drops in
market are more frequent than increases. For the jump frequency parameter,

1This is done numerically performed by using the cumulative distribution function.
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we observe values from other studies. Wang uses a value of 0.1 as empirical
studies suggest a major crash happening every ten years. However, in our
model, we also take into account positve jumps as well so it increases the
likelihood of an ‘event’ occurring. Furthermore, our mean jump size is less
than what Wang uses. Based on these difference, we set A\ to 0.2.

The parameters are summarised in Table 3.

Table 3 Parameters for our model.

Parameter Value

X 0.1
o 0.2
r 0.005
P -0.9424
I6] 0.005
Az 0.0226
Oy 0.0189
A 0.2
g -0.05
04 0.04

5 Results

This section presents the results derived from our model using parameters
as specified in Section 4.6. The numerical scheme describe in section 4 is
implemented in MATLAB on a Pentium PC.

5.1 Constant investent opportunities with no jump

We begin by removing the mean-reverting process and the jump component
from the model we described in Section 3, arriving at the Richard’s model.
This is achieved by setting A\,, A and o, to 0. As proved by Richard, the
optimal allocation weight for this particular is the myopic demand. This is
tabled in 4. 12

The results are comparable to Wang (2004) Table 6.4 (p.72). A 0.1 year
time step was used to produce these results. Under an explicit scheme,

12Gince the price of risk does not move between states, the model is essentially solving
for a system of equations for each independent price of risk. Consequently, only 3 price of
risks are used to speed up convergence.
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Table 4 Richard’s model. Parameters are derived from Wang (2004) which
is the Japanese economy. x = 0.1, » = 0.005 and ¢ = 0.2

y=15 Y=50
Age
R isky nvestm ent C onsum ption Begquest | Risky Investment Consum ption Bequest
30 33.08% 01781 75110 9 80% 01740 74263
40 3311% 02022 76790 9 80% 01740 75939
50 3313% 02357 78935 981% 02311 78084
60 3315% 02841 81603 9 82% 02791 80752
70 3316% 03583 84757 9 82% 03526 83910
80 3317% 04836 88369 9 83% 04768 8.7530
90 3317% 0.7253 91031 9 84% 0.7163 9.0719
100 3317% 14016 9.0645 9 84% 13837 89619
13

however, a time step of this magnitude would cause instability after 5 time
step. To achieve stability, the explicit scheme requires a time step in the order
of 0.0001. Thus, the implicit scheme achieves the same accuracy with a larger
time step (about 1000 times) than the explicit scheme. This demonstrates
the advantage of the implicit scheme.

Unfortunately, when we try to apply this program in modelling terminal
utility, the program fails after several iterations. This is because under the
terminal utility case, that is, without consumption and bequest, the HJB
equation becomes

1

where one of the trivial solution is when J; = Jy = Jyw = 0, that is when
all the J values are the same. By setting the step size for wealth too small,
the J values are more closer together and thus converges to the same value
more easily. Increasing the step size would delay the failure.

5.2 Constant investment opportunities with constant
jumps

Only a minor adjustment needs to be made to the previous model for this
test. The values of A and 7, are set to values extracted from Wang (2004).
To ensure that the results are accurate, Wu'’s results will be used calculate
the theoretical value'®. Table 5 displays the results.

14Wang simply used 0.1 as the magnitude of the jump size rather than using the expo-
nential function. As such, his values were converted to indices.

5 Following Wu'’s suggestion, we assume that 6 is 0 initially and 6 is calculated recur-
sively. Only a few iterations are required to yield satisfactory values
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Table 5 Wang’s model. Parameters are the same as Table 4. In addition,

g = —0.10536

Jum p Frequency

TheoreticalR isky
Investm ent W u)

R isky Tnvestm ent
O urm odel)

Consumption Bequest

001
005
010

3158%
24 68%
16 25%

3136%
24 53%
16 15%

01777
01757
01738

74888
74067
73318

The values obtained in this study is again comparable to Wang’s and
more importantly, are very close to the theoretical values. This confirms that
Wang’s results are accurate. Similar to Wang’s findings, the consumption and
bequest are only marginally impacted by jumps.

5.3 Multiple roots

A peculiarity observed by Wang in his study was the instability of the optimal
weight when wealth is towards the boundary, that is when wealth is close to
20. The optimal weights fluctates as seen from Figure 6.2 Wang (2004).
The cause of this effect was not known. Wang investigated the possibility of
multiple roots or the non-smoothness of the value function. However, none
of those were fruitful and so the cause of this instability is still unknown.

Using the implicit iterative method, however, seems to resolve this issue,
as shown in Figure 1. The differences between this study’s implementation
and Wang’s are the method in deriving # and the finite difference scheme
used. In order to obtain 6, Wang solves the first-order condition by finding
the root to the equation. Our study uses an iterative approach and an implicit
scheme rather than an explicit one. Given these differences and that Wang
was unable to find multiple roots, it suggests that the instability is caused
by the explicit scheme. Thus a reduction in time step or an increase in the
wealth interval may resolve the issue.

5.4 Numerical Problems

While testing, however, it was observed that when z; is 0 and A or 7 is
large in magnitude, a similar effect occurs. For instance, when A = 0.5
and n = —0.10536, the values for theta is shown in Figure 2: As one can
observe, there is a large unusual spike. The reason for this phenomenon
is that when x; = 0, shorting occurs. Consequently, the jump demand,
E1+6(e"—1)]7%(e” — 1) is greater than 1. Due to the boundary condition
that is imposed, the partial, Jy» becomes 0 when wealth is close to maximum.
As such, the value function becomes unsmooth since some value function
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Figure 3: Optimal allocation (%) against wealth when A\ = 0.1.

contain the jump demand while others don’t. This is not a problem when
only a small portion of wealth are affected. To demonstrate, we adjust A\ to
be 0.2, so the shorting is reduced, translating to less wealth points being over
the boundary. Figure 3 displays the function 6 over time:

There is still a kink in the 6 but it is not as sharp as the kink in Figure
2. As a result, this kink is smoothed out after going back several time-steps.
This becomes a problem when too many values do not contain the jump
demand component.

This is unrelated to the problem discussed in the last section as in Wang’s
case, the market only experiences crashes. Therefore, given that the risk
premium is positive, no shorting would occur. Thus this problem would not
occur in Wang’s model.

5.5 Mean-reverting investment opportunities with jumps
but no correlation

Table 5.5 displays the results when there is no correlation but jumps exist.
To dissect the two demand, we first calculate the standard myopic de-



5.6 MEAN REVERSION WITH JUMPS AND CORRELATION 27

Mean-reversion with jumps but no correlation

v=1.5
Age Myopic Demand Jump Demand Overall Demand
30 32.61% -15.82% 16.79%
40 32.73% -15.92% 16.81%
50 32.83% -16.01% 16.82%
60 32.91% -16.08% 16.83%
70 32.96% -16.12% 16.84%
80 32.99% -16.14% 16.85%
90 33.01% -16.15% 16.86%
100 33.01% -16.15% 16.86%

mand, which can be obtained from Section 3. The overall optimal allocation,
including jumps, is then obtained from our model'®. Finally, the jump de-
mand is simply the difference between the two values. As it clearly demon-
strates, mean-reversion without correlation does not have any impact on the
jump demand. The jump demand is relatively stable. It is 16.86% when the
investor is aged 100 and decreases to 16.79% at the age of 30. While there
is a slight decrease in the value, however, the reduction is by no means near
the magnitude observed by Wu, as reported in Section ...}7. The differences
observed in this result are mainly due to the discretisation error introduced
by the numerical scheme.

5.6 Mean reversion with jumps and correlation

The results of the two controls, # and ¢;, are shown in Figures 6 and 7. With
a correlation very close to —1, we find that, in the absence of jumps, the
intertemporal hedging demand is not as large as observed by other studies
including Campbell and Viceria and Wachter. Wachter reported that the
intertemporal hedging demand is approximately 50% of the myopic demand
even when risk premium is 0.1 (the risk premium for our study) and v = 4
for a 30 year period. However, over a 80 year period, our model suggests
that it is only a mere 10% of the myopic demand. The reason for such a
dramatic difference is due to the extreme relative sizes of the volatility of the
risky asset and the risk premium. o is 0.2 while o, is only 0.0189, which is
10 times smaller. As a result, in order to hedge against changes in the risk
premium, the investor will only need to increase his/her allocation to the

16X, is not adjusted as suggested by Wu
1"Wu does use different values but tests on different parameters do not contradict the
nature of our observation
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Table 6 Optimal theta. The optimal asset allocation is split into two parts:
myopic (6,,) and intertemporal (6,,). € without subscript s has jump risk
taken into consideration.

M yopic Intertem poralH edging O verall
Age
0. 0., 0 0, 0. [
30 3261% 16.79% 336% 168% 3597% 1847%
40 32.73% 16 81% 321% 169% 3594% 18 50%
50 3283% 16 82% 3.06% 1.76% 3589% 18 58%
60 3291% 16 83% 290% 184% 3581% 1867%
70 3296% 16 84% 2 69% 188% 3565% 18.72%
80 3299% 16 85% 2 35% 181% 3534% 18 66%
90 33.01% 16 86% 1.73% 142% 34 74% 1828%
100 33.01% 16 86% 090% 0.73% 3391% 17 59%

Table 7 Optimal consumption. The optimal consumption is split into two
parts: myopic (¢,,) and intertemporal (cp). ¢ without subscript s has jump
risk taken into consideration.

Age M yopic Intertem poralH edging O verall
Che Cn Che Ch Ce c

30 01781 01746 0.0008 0.0003 01789 01749
40 02022 01989 0.0008 0.0003 02030 01992
50 02357 02326 0.0006 0.0003 02363 02329
60 02841 02813 0.0005 0.0002 02846 02815
70 03583 03558 0.0003 0.0003 03586 03561
80 04836 04817 0.0004 0.0002 04840 04819
90 0.7253 0.7245 0.0009 0.0001 0.7262 0.7246
100 12387 14072 01703 0.0000 14090 14072
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risky asset marginally. Having a large intertemporal demand would actually
make the investor worse off, since a small increase in X; will mean a large
drop in the return of the risky asset. As expected, the correlation increases
the consumption of the investor with or without jumps. The reason for the
marginal improvement could be explained by the low relative risk adversion
we have set. With a v of only 1.5, the investor is not very risk adverse, thus
prefers to invest rather than consume.

6 Conclusion

In this paper, we have examined the optimal behaviour of an investor in
Wu’s model of mean-reverting risk premium with predictability and jump
risks. By optimal behaviour, we refer to the decisions made by the investor in
choosing consumption and allocation to the risky asset in order to maximise
lifetime utility. Comparisons were made with previous studies to validate
their findings.

As noted by Kim and Omberg, we have found that predictability cre-
ates non-myopic behaviour for a risk-averse investor. The investor will hold
more/less than the myopic in order to hedge/speculate future investment
opportunities. When consumption is considered, the non-myopic impact is
lessened. This is in line with Wachter who has derive a closed-form solution
for the optimal allocation when intertemporal consumption part of the in-
vestor’s behaviour. As expected, jumps reduced the overall allocation to the
risky asset but only marginally impacting the consumption behaviour of the
investor. We were, however, unable to observe a decrease in myopic demand
when jumps and predictability interact.

In this study, the finite difference method is used on PDE to approxi-
mate the value functions and subsequently, computing the optimal controls.
However, this method does have its limitation. One of the concerns is the
accuracy of the values obtained due to errors discussed in 4.5. The results in
Section 5.2 shows that there is about 1% difference between the theoretical
value and the numerical value.

A more concerning problem is that the finite difference scheme does not
work for all different parameters. As demonstrated in Section (5.4), when X
is low and Ag is high, our model fails due to the finiteness of the state space
available. This indicates that this method cannot be applied to all scenarios,
limiting its practial use.
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